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contrast, addition of either triflate 7a or 7b to cyclohexene as 
substrate results in formation of the respective dimers 11a and 
l ib via 9. Products 10,11a, and l ib were characterized and 
identified by spectral means as summarized in Table I. These 
spectral properties are completely consistent with the proposed 
structures. The medium-intensity 2065-cm-1 band and the 
264-nm Xmax of 10 are indicative of cumulenes.9 The intense 
low wavelength absorption (202- and 207-nm Xmax, respec­
tively) for both 11a and l ib is characteristic of known radi-
alenes as is the weak 1710-cm-' band.' ° The ' H NMR are also 
consistent with the proposed structures, although they do not 
differentiate between monomer and dimer. 

The most characteristic and useful spectral features of 10, 
11a, and l ib are exhibited by the mass spectra and 13C NMR 
data. For both 10 and lib, the respective molecular ions are 
the base peaks and, for 1 la, the molecular ion has an intensity 
of 94%. The 13C spectrum of 10 is in accord with those of 
analogous cumulenes11 and the spectra of dimers 11a and l ib 
are characteristic of similar alkylidenecyclopropanes12 and in 
harmony with expectations13 for such hydrocarbons. 

In summary, we have discovered a simple highly efficient 
means of allenylidene carbene 4 generation. These species 
readily add to olefins to give highly oxygen sensitive cumulenes 
and their dimers. At present, we are examining the possibility 
that allenylidene carbenes 4 are similar in nature to the related 
unsaturated carbenes 2 and 3 which are found to be electro-
philic and possess a singlet ground state.14 This question, as 
well as the chemistry of these novel unsaturated reactive in­
termediates, will be the subject of future reports. 
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Twofold Cation-OIefin Cyclization. 
Synthesis of syn-[3.2.1]2- and [2.2.2]2Geminane 

Sir: 

A large number of topologically fascinating molecules 
constructed of repeating alicyclic units are possible. Of these, 
only the homologous series comprised of adamantane,1 di-
amantane,2 triamantane,3 and the tetramantanes4 has received 
significant attention. This is a consequence not only of their 
relationship to the diamond lattice,5 but also because of their 
relative thermodynamic stability and consequent ready 
availability by Lewis acid catalyzed cationic rearrangement 
of many isomeric precursors.6 Since this synthetic approach 
is not extrapolatable to ring systems having different topo­
graphies, the absence of molecules from the latter group can 
be traced chiefly to an existing lack of viable synthetic meth­
odology.78 In this communication, we outline a new approach 
within this field of research which is founded on the concept 
of twofold cation-olefin cyclization, and is both efficient and 
simple. The present contribution describes the synthesis of 
novel hydrocarbons 1 and 2 which, for convenience, have been 

colloquially named 5>w-[3.2.1]2geminane and [2.2.2]2gemi-
nane, respectively.9,10 

The molecular frameworks of 1 and 2 are formally con­
structed of pairs of bicyclo[3.2.1]octane and bicyclo[2.2.2]-
octane ring systems, respectively, which have been fused 
symmetrically across a common C1-C2 bond. This innovation 
delivers a Cj symmetric structure for 1 and a still more sym­
metric (C2/1) molecule in the case of2. 

Reduction of known diester 3 " with lithium aluminum 
hydride in refluxing tetrahydrofuran afforded diol 4a (98%), 
mp 152-153 0C,12 which was subsequently converted to the 
bistetrahydropyranyloxy derivative 4b (100%). Treatment of 
4b with triphenylphosphine dibromide in dichloromethane at 
room temperature for 20 h led directly13 to dibromide 5a 
(67%): mp 133.5-134.5 0C; 1H NMR (5, CDCl3) 5.46 (nar­
row m, 4 H), 3.28 (t, J = 7 Hz, 4 H), 1.98 (pseudosinglet, 8 H), 
1.97 (t, J = 7 Hz, 4 H). For subsequent comparison purposes 
and to further substantiate that 5a had formed without rear­
rangement, the dibromide was reduced with sodium in liquid 

CH2COOCH3 CH2CH2OR CH2CH2X 
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ammonia (or alternatively UAIH4 in THF) to give oily hy­
drocarbon 5b:121H NMR (5, CDCl3) 5,26 (narrow m, 4 H), 
1.90 (pseudosinglet, 8 H), 1.46 (q, J = 6.5 Hz, 4 H), 0.78 (t, 
J = 6.5 Hz, 6 H); 13C NMR (ppm, CDCl3) 125.06, 36.27, 
31.36,23.84,7.91. 

While 5a was stirred with approximately ten times its weight 
of silica gel (activity I) in petroleum ether (30-60 0C) at room 
temperature for 48 h, the reaction mixture was seen to progress 
through several color changes (colorless -* yellow -*• orange 
—• red).14 Filtration and concentration of the reaction mixture 
delivered 7 (83%): mp 182.5-183.5 0C;121H NMR (5, CDCl3) 
4.33 (m, 2 H), 2.67-0.90 (series of m, 18 H). The high reg-
ioselectivity of the intramolecular neighboring 7r-bond par­
ticipation to give 6 (synchronous formation of dication not 
implied) is striking, particularly in view of literature precedent 
involving bicyclo[3.2.1]octanyl-bicyclo[2.2.2]octanyl inter-
conversions15 and other observations to follow. That the 
stereochemistries about the bromine substituted carbon atoms 
must be identical follows from the simplified 13C NMR 
spectrum (57.19,46.66, 42.72, 40.05, 38.16, 33.94, 30.29 ppm) 
which requires Ci symmetry. The .yyrt-methano configuration 
was deduced from steric considerations (see 6), 1H NMR 
analysis, and subsequent reactions. 

As expected, reduction of 7 with tri-«-butyltin hydride gave 
1, a colorless solid: mp 78.5-79.5 0C;12 13C NMR (ppm, 
CDCl3) 47.68, 40.20, 36.36, 34.86, 32.43, 30.97, 28.26. 

Access to dienes 8 and 9 can be gained by various routes. For 
example, exposure of 7 to silver perchlorate in benzene-pen-
tane solution, potassium te/7-butoxide in tetrahydrofuran, or 
basic alumina (slurry in petroleum ether) afforded mixtures 
of the two hydrocarbons. In more expeditious fashion, direct 
treatment of 5a with silver perchlorate or simply with basic 
alumina also gave these products. In every instance, 8 domi­
nated the composition at the 65-75% level. The dienes were 
separated by high-pressure liquid chromatography on silica 
gel. Diene 8 is a colorless solid: mp 76.5-77.5 0C;12 1H NMR 
(5, CDCl3) 5.73 (dd, J = 10, 6 Hz, 2 H), 5.06 (d, J = 10 Hz, 
2H), 2.45-1.14 (series of m, 14 H); 13C NMR (ppm, CDCl3) 
135.01, 132.73, 51.85, 42.77, 36.31, 33.89, 31.70. Diene 9 is 
equally crystalline and stable: mp 99.5 0C (sealed tube);12 1H 
NMR (<5, CDCl3) 5.67 (dd, / = 10, 7 Hz, 2 H), 5.20 (d, J = 
10 Hz, 2 H), and 2.55-0.66 (series of m, 14 H); 13C NMR 
(ppm, CDCl3) 134.19, 130.94, 51.61, 38.21, 37.58, 35.88, 
33.26. 

Catalytic hydrogenation of each of these purified dienes over 
platinum in ethyl acetate solution gave 1 and 2. The high 
symmetry of 2, mp 72.0-72.5 0C,12 is apparent from its five-
line decoupled 13C NMR spectrum (ppm, CDCl3: 43.50, 
34.52,33.06,31.22,28.94). 

The tactical use of twofold cation-olefin cyclization in the 
manner herein described promises to be of some generality. 
Given the wide diversity of possible starting materials, the 
methodology can serve as a useful conceptual template for the 
elaboration of manifold polycondensed systems.16 
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